Comparative Sperm Proteomics in Mouse Species with Divergent Mating Systems
نویسندگان
چکیده
Sexual selection is the pervasive force underlying the dramatic divergence of sperm form and function. Although it has been demonstrated that testis gene expression evolves rapidly, exploration of the proteomic basis of sperm diversity is in its infancy. We have employed a whole-cell proteomics approach to characterize sperm divergence among closely related Mus species that experience different sperm competition regimes and exhibit pronounced variation in sperm energetics, motility and fertilization capacity. Interspecific comparisons revealed significant abundance differences amongst proteins involved in fertilization capacity, including those that govern sperm-zona pellucida interactions, axoneme components and metabolic proteins. Ancestral reconstruction of relative testis size suggests that the reduction of zona pellucida binding proteins and heavy-chain dyneins was associated with a relaxation in sperm competition in the M. musculus lineage. Additionally, the decreased reliance on ATP derived from glycolysis in high sperm competition species was reflected in abundance decreases in glycolytic proteins of the principle piece in M. spretus and M. spicilegus. Comparison of protein abundance and stage-specific testis expression revealed a significant correlation during spermatid development when dynamic morphological changes occur. Proteins underlying sperm diversification were also more likely to be subject to translational repression, suggesting that sperm composition is influenced by the evolution of translation control mechanisms. The identification of functionally coherent classes of proteins relating to sperm competition highlights the utility of evolutionary proteomic analyses and reveals that both intensified and relaxed sperm competition can have a pronounced impact on the molecular composition of the male gamete.
منابع مشابه
Drosophila sperm proteome evolution
Despite their conserved functional role in sexually reproducing organisms, spermatozoa are a diverse and rapidly evolving cell type. This phenomenon is largely attributed to sexual selection in polygamous species where sperm from multiple males compete to fertilize a limited number of oocytes. Drosophila have proven to be a particularly informative model system for the study of spermatogenesis ...
متن کاملSperm competition games between sneaks and guards: a comparative analysis using dimorphic male beetles.
Sperm competition is widely recognized as a pervasive force of sexual selection. Theory predicts that across species increased risk of sperm competition should favor an increased expenditure on the ejaculate, a prediction for which there is much evidence. Sperm competition games have also been developed specifically for systems in which males adopt the alternative male mating tactics of sneakin...
متن کاملComparative population genomics of the ejaculate in humans and the great apes.
The rapid molecular evolution of reproductive genes is nearly ubiquitous across animals, yet the selective forces and functional targets underlying this divergence remain poorly understood. Humans and closely related species of great apes show strongly divergent mating systems, providing a powerful system to investigate the influence of sperm competition on the evolution of reproductive genes. ...
متن کاملDifferent types of oestrous cycle in two closely related South American rodents (Cavia aperea and Galea musteloides) with different social and mating systems.
A comparative approach was used to investigate two closely related South American rodent species: the wild cavy (Cavia aperea) and the yellow-toothed cavy (Galea musteloides). These species of wild guinea-pig inhabit different habitats and show divergent social and mating systems. Cavia have a polygynous mating system, whereas in Galea promiscuous mating occurs. These observations correspond to...
متن کاملMating systems, sperm competition, and the evolution of sexual dimorphism in birds.
Comparative analyses suggest that a variety of factors influence the evolution of sexual dimorphism in birds. We analyzed the relative importance of social mating system and sperm competition to sexual differences in plumage and body size (mass and tail and wing length) of more than 1,000 species of birds from throughout the world. In these analyses we controlled for phylogeny and a variety of ...
متن کامل